Week 1

1.1 Groups

Definition. A group is a set G equipped with a binary operation

$$
* : G \times G \longrightarrow G
$$

(called the group operation or "product" or "multiplication") such that the following conditions are satisfied:

• The group operation is **associative**, i.e.

$$
(a * b) * c = a * (b * c)
$$

for all $a, b, c \in G$.

• There is an element $e \in G$, called an **identity element**, such that

$$
a * e = e * a = a,
$$

for all $a \in G$.

• For every $a \in G$ there exists an element $a^{-1} \in G$, called an **inverse** of a, such that

$$
a^{-1} * a = a * a^{-1} = e.
$$

Remark. We often write $a \cdot b$ or simply ab to denote $a * b$.

Definition. If $ab = ba$ for all $a, b \in G$, we say that the group operation is **com**mutative and that G is an abelian group; otherwise we say that G is nonabelian.

Remark. When the group is abelian, we often use $+$ to denote the group operation.

Definition. The **order** of a group G, denoted by $|G|$, is the number of elements in G. We say that G is **finite** (resp. **infinite**) if $|G|$ is finite (resp. infinite).

Example 1.1.1. The following sets are groups, with respect to the specified group operations:

- $G = \mathbb{Q}$, where the group operation is the usual addition + for rational numbers. The identity is $e = 0$. The inverse of $a \in \mathbb{Q}$ with respect to $+$ is $-a$. This is an infinite abelian group.
- $G = \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$, where the group operation is the usual multiplication for rational numbers. The identity is $e = 1$, and the inverse of $a \in \mathbb{Q}^{\times}$ is $a^{-1} = \frac{1}{a}$. This group is also infinite and abelian.

Note that Q is *not* a group with respect to multiplication. For in that case, we have $e = 1$, but $0 \in \mathbb{Q}$ has no inverse $0^{-1} \in \mathbb{Q}$ such that $0 \cdot 0^{-1} = 1$.

Exercise: Verify that the following sets are groups under the specified binary operations:

- $(\mathbb{Z}, +), (\mathbb{R}, +), (\mathbb{C}, +).$
- $(\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}, \cdot)$
- (U_m, \cdot) , where $m \in \mathbb{Z}_{>0}$,

$$
U_m = \{1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{m-1}\}
$$

and $\zeta_m = e^{2\pi i/m} = \cos(2\pi/m) + i\sin(2\pi/m) \in \mathbb{C}$.

- The set of bijective functions $f : \mathbb{R} \longrightarrow \mathbb{R}$, where $f * g := f \circ g$ (i.e. composition of functions).
- More generally, one can consider any nonempty set X . Then the set

$$
S_X:=\{\sigma:X\to X:\sigma\text{ is bijective}\}
$$

of all bijective maps from X onto X is a group under composition of maps.

Example 1.1.2. The set $G = GL(2, \mathbb{R})$ of real 2×2 matrices with nonzero determinants is a group under matrix multiplication, with identity element:

$$
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
$$

In the group G , we have:

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \ -c & a \end{pmatrix}
$$

Note that there are matrices $A, B \in GL(2, \mathbb{R})$ such that $AB \neq BA$. Hence $GL(2, \mathbb{R})$ is nonabelian (and infinite).

More generally, for any $n \in \mathbb{Z}_{>0}$, the set $GL(n, \mathbb{R})$ of $n \times n$ real matrices M, such that det $M \neq 0$, is a group under matrix multiplication, called the **General Linear Group.** The group $GL(n, \mathbb{R})$ is nonabelian for $n \geq 2$.

Exercise: The set $SL(n, \mathbb{R})$ of real $n \times n$ matrices with determinant 1 is a group under matrix multiplication, called the Special Linear Group.

Example 1.1.3. Let $n \in \mathbb{Z}_{>0}$. Consider the finite set

$$
\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}.
$$

We define a binary operation $+_n$ on \mathbb{Z}_n by

$$
a +_n b = \begin{cases} a + b & \text{if } a + b < n, \\ a + b - n & \text{if } a + b \ge n. \end{cases}
$$

for any $a, b \in \mathbb{Z}_n$.

Exercise: Then $(\mathbb{Z}_n, +_n)$ is a finite abelian group. (By abuse of notation, we will usually use the usual symbol $+$ to denote the additive operation for this group.)

Proposition 1.1.4. *The identity element* e *of a group* G *is unique.*

Proof. Suppose there is an element $e' \in G$ such that $e'g = ge'$ for all $g \in G$. Then, in particular, we have:

$$
e'e=e
$$

But since *e* is an identity element, we also have $e'e = e'$. Hence, $e' = e$. \Box

Proposition 1.1.5. *Let* G *be a group. For all* $q \in G$ *, its inverse* q^{-1} *is unique.*

Proof. Suppose there exists $g' \in G$ such that $g'g = gg' = e$. By the associativity of the group operation, we have:

$$
g' = g'e = g'(gg^{-1}) = (g'g)g^{-1} = eg^{-1} = g^{-1}.
$$

Hence, q^{-1} is unique.

Let G be a group with identity element e. For $g \in G$, $n \in \mathbb{N}$, let:

$$
g^n := \underbrace{g \cdot g \cdots g}_{n \text{ times}}.
$$

$$
g^{-n} := \underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{n \text{ times}}
$$

$$
g^0 := e.
$$

Proposition 1.1.6. *Let* G *be a group.*

1. For all $g \in G$ *, we have:*

$$
(g^{-1})^{-1} = g.
$$

2. For all $a, b \in G$ *, we have:*

$$
(ab)^{-1} = b^{-1}a^{-1}.
$$

3. For all $g \in G$ *,* $n, m \in \mathbb{Z}$ *, we have:*

$$
g^n \cdot g^m = g^{n+m}.
$$

Proof. Exercise.

 \Box