
Week 1

1.1 Groups
Definition. A group is a set G equipped with a binary operation

∗ : G×G −→ G

(called the group operation or “product” or “multiplication”) such that the fol-

lowing conditions are satisfied:

• The group operation is associative, i.e.

(a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a, b, c ∈ G.

• There is an element e ∈ G, called an identity element, such that

a ∗ e = e ∗ a = a,

for all a ∈ G.

• For every a ∈ G there exists an element a−1 ∈ G, called an inverse of a,

such that

a−1 ∗ a = a ∗ a−1 = e.

Remark. We often write a · b or simply ab to denote a ∗ b.
Definition. If ab = ba for all a, b ∈ G, we say that the group operation is com-
mutative and that G is an abelian group; otherwise we say that G is nonabelian.

Remark. When the group is abelian, we often use + to denote the group opera-

tion.

Definition. The order of a group G, denoted by |G|, is the number of elements in

G. We say that G is finite (resp. infinite) if |G| is finite (resp. infinite).
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Example 1.1.1. The following sets are groups, with respect to the specified group

operations:

• G = Q, where the group operation is the usual addition + for rational

numbers. The identity is e = 0. The inverse of a ∈ Q with respect to + is

−a. This is an infinite abelian group.

• G = Q× = Q\{0}, where the group operation is the usual multiplication

for rational numbers. The identity is e = 1, and the inverse of a ∈ Q× is

a−1 = 1
a
. This group is also infinite and abelian.

Note that Q is not a group with respect to multiplication. For in that case,

we have e = 1, but 0 ∈ Q has no inverse 0−1 ∈ Q such that 0 · 0−1 = 1.

Exercise: Verify that the following sets are groups under the specified binary

operations:

• (Z,+), (R,+), (C,+).

• (R× = R\{0}, ·), (C× = C\{0}, ·)
• (Um, ·), where m ∈ Z>0,

Um = {1, ζm, ζ2m, . . . , ζm−1
m }

and ζm = e2πi/m = cos(2π/m) + i sin(2π/m) ∈ C.

• The set of bijective functions f : R −→ R, where f ∗ g := f ◦ g (i.e.

composition of functions).

• More generally, one can consider any nonempty set X . Then the set

SX := {σ : X → X : σ is bijective}
of all bijective maps from X onto X is a group under composition of maps.

Example 1.1.2. The set G = GL(2,R) of real 2× 2 matrices with nonzero deter-

minants is a group under matrix multiplication, with identity element:

I =

(
1 0
0 1

)
.

In the group G, we have:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)

Note that there are matrices A,B ∈ GL(2,R) such that AB �= BA. Hence

GL(2,R) is nonabelian (and infinite).
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More generally, for any n ∈ Z>0, the set GL(n,R) of n× n real matrices M ,

such that detM �= 0, is a group under matrix multiplication, called the General
Linear Group. The group GL(n,R) is nonabelian for n ≥ 2.

Exercise: The set SL(n,R) of real n × n matrices with determinant 1 is a group

under matrix multiplication, called the Special Linear Group.

Example 1.1.3. Let n ∈ Z>0. Consider the finite set

Zn = {0, 1, 2, . . . , n− 1}.

We define a binary operation +n on Zn by

a+n b =

{
a+ b if a+ b < n,
a+ b− n if a+ b ≥ n.

for any a, b ∈ Zn.

Exercise: Then (Zn,+n) is a finite abelian group. (By abuse of notation, we will

usually use the usual symbol + to denote the additive operation for this group.)

Proposition 1.1.4. The identity element e of a group G is unique.

Proof. Suppose there is an element e′ ∈ G such that e′g = ge′ for all g ∈ G.

Then, in particular, we have:

e′e = e

But since e is an identity element, we also have e′e = e′. Hence, e′ = e.

Proposition 1.1.5. Let G be a group. For all g ∈ G, its inverse g−1 is unique.

Proof. Suppose there exists g′ ∈ G such that g′g = gg′ = e. By the associativity

of the group operation, we have:

g′ = g′e = g′(gg−1) = (g′g)g−1 = eg−1 = g−1.

Hence, g−1 is unique.

Let G be a group with identity element e. For g ∈ G, n ∈ N, let:

gn := g · g · · · g︸ ︷︷ ︸
n times

.

g−n := g−1 · g−1 · · · g−1︸ ︷︷ ︸
n times

g0 := e.
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Proposition 1.1.6. Let G be a group.

1. For all g ∈ G, we have:
(g−1)−1 = g.

2. For all a, b ∈ G, we have:

(ab)−1 = b−1a−1.

3. For all g ∈ G, n,m ∈ Z, we have:

gn · gm = gn+m.

Proof. Exercise.
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