Week 1

1.1 Groups

Definition. A group is a set G equipped with a binary operation
x:GxG—G

(called the group operation or “product” or “multiplication”) such that the fol-
lowing conditions are satisfied:

e The group operation is associative, i.e.
(axb)xc=ax(bxc)
forall a, b, c € G.

e There is an element e € G, called an identity element, such that
axe=ex*xa=a,
foralla € G.

e For every a € G there exists an element o' € G, called an inverse of a,

such that

a'xa=axa ' =e.

Remark. We often write a - b or simply ab to denote a * b.

Definition. If ab = ba for all a,b € G, we say that the group operation is com-
mutative and that G is an abelian group; otherwise we say that G is nonabelian.

Remark. When the group is abelian, we often use + to denote the group opera-
tion.

Definition. The order of a group G, denoted by |G|, is the number of elements in
G. We say that G is finite (resp. infinite) if |G| is finite (resp. infinite).
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Example 1.1.1. The following sets are groups, with respect to the specified group
operations:

e G = Q, where the group operation is the usual addition + for rational
numbers. The identity is ¢ = 0. The inverse of a € QQ with respect to + is
—a. This is an infinite abelian group.

e G = Q* = Q\{0}, where the group operation is the usual multiplication

for rational numbers. The identity is e = 1, and the inverse of a € Q* is

al= % This group is also infinite and abelian.

Note that QQ is not a group with respect to multiplication. For in that case,
we have e = 1, but 0 € Q has no inverse 0! € Q such that0-0~! = 1.

Exercise: Verify that the following sets are groups under the specified binary
operations:

o (Z,+), (R,+), (C,+).
(R* = R\{0},), (C* = C\{0},)
(Up, +), where m € Z-,
Um - {17 Cm» C72nv ) C:T?Z_l}
and ¢, = e*™/™ = cos(2m/m) + isin(27/m) € C.

The set of bijective functions f : R — R, where f x g := f o g (i.e.
composition of functions).

More generally, one can consider any nonempty set X. Then the set
Sx :={o: X — X : ois bijective}
of all bijective maps from X onto X is a group under composition of maps.

Example 1.1.2. The set G = GL(2, R) of real 2 x 2 matrices with nonzero deter-
minants is a group under matrix multiplication, with identity element:

10
= (O 1) |
In the group G, we have:

a b\ 1 d —b
c d)  ad—bc\—c a

Note that there are matrices A, B € GL(2,RR) such that AB # BA. Hence
GL(2,R) is nonabelian (and infinite).



More generally, for any n € Z-q, the set GL(n, R) of n x n real matrices M,
such that det M # 0, is a group under matrix multiplication, called the General
Linear Group. The group GL(n, R) is nonabelian for n > 2.

Exercise: The set SL(n,R) of real n x n matrices with determinant 1 is a group
under matrix multiplication, called the Special Linear Group.

Example 1.1.3. Let n € Z~ . Consider the finite set
Z,=1{0,1,2,...,n—1}.
We define a binary operation +,, on Z,, by

Lop— a+b ifa+b<n,
@Y= a+b—n ifa+b>n.

for any a,b € Z,.

Exercise: Then (Z,, +,) is a finite abelian group. (By abuse of notation, we will
usually use the usual symbol + to denote the additive operation for this group.)

Proposition 1.1.4. The identity element e of a group G is unique.

Proof. Suppose there is an element ¢/ € G such that ¢'g = ge’ for all g € G.
Then, in particular, we have:
6/6 =€

But since e is an identity element, we also have ¢’e = ¢’. Hence, ¢/ = e. O

Proposition 1.1.5. Let G be a group. For all g € G, its inverse g~ is unique.

Proof. Suppose there exists ¢’ € G such that ¢'g = g¢’ = e. By the associativity
of the group operation, we have:

d=gde=4gs")=(d9)g ' =eg =g"

Hence, ¢! is unique. O

Let GG be a group with identity element e. For g € G, n € N, let:

9" :=g9-9--g.
W—/
n times

_l.g_l...g_l

J/

g "=y

—
n times

¢ =e.



Proposition 1.1.6. Let G be a group.

1. Forall g € G, we have:
(g H =g

2. Forall a,b € G, we have:

(ab)' =b"ta

3. Forall g € G, n,m € Z, we have:

Proof. Exercise.



